《孫子算經卷下》 "Sun Tzŭ's Computational Classic: Volume III"
§3. Volume of a cone

This section gives a worked example of computing the volume of a cone.

The relevant unit conversions for length are

\begin{aligned} 1 \unit{rod~(丈)} &= 10 \unit{rules~(尺)} \\ 1 \unit{rule~(尺)} &= 10 \unit{inches~(寸)} \\ 1 \unit{inch~(寸)} &= 10 \unit{tenths~(分)}. \end{aligned}

The conversion between capacity units and volume units is given by

1 \unit{barrel~(斛)} = 1.62 \unit{rules~(尺)}^3.

See Vol. I §1 (Units of length) and Vol. II §10 Extended commentary.

Translation

Chinese source text: Version A, Version B, Version C, Version D.
Unless noted otherwise, I follow the text from Version D, 《知不足齋叢書》本.

Source text Target text Notes
今有平地聚粟、下周三丈六尺、高四尺五寸。問粟幾何。 Suppose there be gathered grain [on] level ground, of lower circumference three rods [and] six rules, [and] height four rules [and] five inches. [We] ask, how much [be the] grain?
答曰、一百斛。 Answer saith: one hundred barrels.
術曰、置周三丈六尺、自相乘、得一千二百九十六尺。 Method saith: put [down the] circumference three rods [and] six rules, [which], multiplied with itself, resulteth in one thousand two hundred [and] ninety-six rules.
以高四尺五寸乘之、得五千八百三十二尺。 Multiplying it by [the] height four rules [and] five inches, resulteth in five thousand eight hundred [and] thirty-two rules.
以三十六除之、得一百六十二尺。 Dividing it by thirty-six, resulteth in one hundred [and] sixty-two rules.
以斛法一尺六寸二分除之、即得。 Dividing it by [the] barrel divisor, one rule, six inches, [and] two tenths, [we] are done.
  • 斛法: [the] barrel divisor

    This is the conversion between the capacity unit "barrel", huk (), and the volume unit "cubic rule", chʻek (); see Vol. II §10 Extended commentary.

  • In modern notation, the volume (or capacity) of a cone of circumference C = 36 \unit{rules} and depth H = 4.5 \unit{rules} is
    \begin{aligned} V &\approx \frac{C^2 H}{36} \\[\tallspace] &= \frac{(36 \unit{rules})^2 \cdot (4.5 \unit{rules})}{36} \div \frac{1.62 \unit{rules}^3}{\unit{barrel}} \\[\tallspace] &= 100 \unit{barrels}. \end{aligned}
    Here \pi \approx 3 (so that 12\pi \approx 36), see Vol. I §5.

Cite this page

Conway (2023). "Sun Tzŭ's Computational Classic: Volume III §3". <https://yawnoc.github.io/sun-tzu/iii/3> Accessed yyyy-mm-dd.